Rowe Researcher

Rowe Researcher: The Effects of Cranberry Consumption on Lipid and Lipoprotein Metabolism

The Effects of Cranberry Consumption on Lipid and Lipoprotein Metabolism in Human Apolipoprotein A-I Transgenic Mice Fed a High Fat and High Cholesterol Diet

May 2017

Investigators: Christian Caceres, Dr. Ji-Young Lee, Dr. Young-Ki Park

The development of pathological conditions including cardiovascular disease are well documented to manifest from an obese state due to high lipid burden at adipose tissue and consequent low-grade inflammation. We hypothesized that anthocyanin-rich whole cranberry powder would prevent inflammation while simultaneously modifying high- density lipoprotein (HDL) metabolism to confer cardioprotection in C57BL/6J mice expressing human apolipoprotein A-I transgene (hApoAITg). Male hApoAITg C57BL/6J mice were fed a modified AIN-93M high fat/high cholesterol diet (HF/HC; 15% fat, 0.25% cholesterol by weight) with only the treatment group receiving 5% whole cranberry powder by weight for 8 weeks. Our results suggest that CR supplementation decreases obesity-induced inflammation in adipose tissue at least in part, by modulating energy metabolism in skeletal muscle. However, additional investigations are required to conclusively determine the effect of cranberry consumption on serum lipids and HDL metabolism.

Rowe Researcher: Tyrosine Phosphorylation of the Bacterial Stress Factor BipA

Akua Owusu at Frontiers in Undergraduate Research

Tyrosine Phosphorylation of the Bacterial Stress Factor BipA aids in Adaptation and Pathogenicity

Summer 2016

Investigators: Akua Owusu and Jui Chaugule

Faculty Advisors: Dr Victoria Robinson and Dr David Benson

BipA is a multi-domain prokaryotic GTPase universally conserved in pathogenic bacteria.  It regulates a number of virulence events including pedestal formation, flagella mediated motility and expression of virulence genes. Most importantly, BipA null mutants are avirulent, suggesting it is a prime target for antimicrobial development.  Central to the function of BipA are its GTPase activity and its association with the ribosome. An examination of the ribosome binding properties of the protein revealed that BipA has two ribosome binding modes. Under normal growth conditions, GTP-bound BipA associates with 70S ribosomes. However, under conditions of stress, ppGpp-bound BipA associates with 30S ribosomes. A study by the O’Connor group at the University of Southampton (UK) demonstrated that BipA undergoes phosphorylation on one of its tyrosine residues and perhaps this modification may play a role in its ability to regulate virulence processes. Therefore, the purpose of my project was to identify the tyrosine phosphorylation sites in EHEC BipA and then determine how this modification affects its biochemical properties particularly its GTPase activity.

Rowe Researcher: Perceived Discrimination Affecting Muslim Health

Perceived Discrimination Affecting Muslim Health

2016-2017

Investigators: Sara Hasan, Michelle Morris

Faculty Advisor: Rick Gibbons

In the past decade, Muslim discrimination has increased to an all-time high. Multiple research journals have identified that discrimination can have adverse health effects on people of certain races. While studies have predominantly been researched towards African-Americans and Hispanics, I questioned how discrimination affects Muslims around the United States. My project aimed to understand the effects discrimination against Muslims has on their overall mental and physical health. Using an online survey website, the first study took place approximately one week after the 2016 United States Presidential election to see if there were adverse health effects present in Muslims, due to the election results. With the same participants for the second study, four months after the election, we will be maintaining contact to see if more health issues, if any, have arisen or if the previous ones have continued on since then. Along with the Muslim participants, we included a significant subsample of non-Muslims to compare their health behaviors during both waves of the study. This project analyzes the issues of Muslim discrimination and how it affects the health of Muslims in the United States.

Rowe Researcher: Regulation of Animal Vascular Tissue

Samana Zaidi at Frontiers in Undergraduate Research
Samana Zaidi at Frontiers in Undergraduate Research

Regulation of Animal Vascular Tissue in a Brainstem Respiratory Center

Spring 2015-Fall 2016

Investigators: Dr. Daniel Mulkey (Associate Professor), Virginia Hawkins (Post doc fellow), and Samana Zaidi

I have worked in Dr. Daniel Mulkey’s lab investigating the processes involving regulation of animal vascular tissue in the brainstem respiratory center. We have been using mammalian models to conduct our research, therefore, rats and mice were utilized. Our research has been focused on chemoreception which is the mechanism by which breathing is regulated as levels of CO2 and H+ increase or decrease in tissues. An important region of interest of ours is the retrotrapezoid nucleus known as the RTN. Within the RTN there are neurons that control breathing. An important channel is contained within the RTN region known as the KCNQ channel. We focused on multiple KCNQ channels primarily KCNQ2 and KCNQ3. These channels are potassium channels that are critical for brain function. We investigated the effects of loss of function and gain of function on KCNQ channel variants and what the response leads to be. In addition, the research was further applied to how we can use KCNQ2 channels to target patients with encephalopathy.

Rowe Researcher: Understanding the Role of SR-B1

Understanding the Role of SR-B1 in Lipid Metabolism and Inflammation

Summer 2016

Investigators: Christopher Blesso, Christina Jiang

SR-B1 is an HDL receptor that has a role in cholesterol exchange and the initiation of intracellular signaling cascades involved in lipid metabolism. SR-B1 is highly expressed in the liver, but its function has not been fully determined in adipocytes, which is the aim of this project. Cholesterol imbalance can result in disease states such as atherosclerosis, so the study of this HDL receptor can be implicated in disease prevention.

The aim of the research was to perform successful knockdown in 3T3-L1 adipocytes by using siRNA (scramble, cyclophilin, SR-B1); determine gene expression of SR-B1 and cyclophilin to confirm knockdown; determine inflammatory response of adipose by introducing LPS or macrophage-conditioned media to cells. After treating the cells with the appropriate reagents, RNA was isolated, cDNA was synthesized, and PCR was conducted to confirm knockdown. There was a 40% knockdown in cyclophilin when treated with cyclophilin siRNA and insignificant knockdown with SR-B1 knockdown. There is about a 60-70% knockdown of SR-B1 in adipocytes treated with SR-B1 siRNA, indicating that the knockdown was successful. In the presence of macrophages, there is about a 40% knockdown of SR-B1. In the presence of LPS, there is also about a 40% knockdown of SR-B1. These successful gene knockdowns provide evidence to continue on with the experiment.

Rowe Researcher: Drug Treatment for Depression

Shanicka Reynolds
Shanicka Reynolds presenting her research at Frontiers in Undergraduate Research

 

Drug Treatment for Depression: Deprenyl’s Effect on Motivation, Effort and Behavior

2015-2016

Investigator: Shanicka Reynolds

Depression is more than a feeling of sadness. It can progress into a disabling disease that degrades mental, physical, and social health. One of the most debilitating symptoms of depression is a decrease in motivational behavior. Motivational symptoms such as fatigue and anergia are difficult to treat and many of the existing antidepressants do not effectively treat motivational symptoms. This project will focus on the MAO-B inhibitor drug, deprenyl. The goal is to provide a more detailed characterization of the motivational effects of deprenyl through experimentation. Successful increase of motivational behavior using deprenyl will not only benefit patients suffering from depression, but will help patients of various disorders such as Parkinson’s where depression can be a side effect of their disease.

 

Rowe Researcher: Hydration in Collegiate Male Soccer Athletes

Knowledge and Assessment of Hydration in Heat Acclimatized Collegiate Male Soccer Athletes

Summer 2015

Investigators: Abigail Colburn1, Robert A. Huggins1, Andrea Fortunati1, David Looney1, Chris West1, Lawrence E. Armstrong, FACSM1, and Douglas J. Casa, FACSM1

1University of Connecticut

Fluid consumption during exercise can be influenced by vessel type and hydration knowledge, however athletes often are not given a choice of vessel and furthermore they are unaware of their individual fluid needs. PURPOSE: The aim of this single-blind matched pairs laboratory study was to investigate if hydration vessel has an impact on water consumption volume and if athletes are aware of their total body fluid balance. METHODS: Nineteen Division I male soccer athletes (age, 20±1 y; height, 180±7 cm; body mass, 78.68±7.39 kg) performed a standard 60 minute sweat electrolyte test in the heat and completed a hydration knowledge and strategy questionnaire afterwards. Ten participants consumed unlimited water from 1L commercial sports drink bottles typically used in practice (BTL), while 9 participants consumed unlimited water from a commercial water bladder hidden above them in the ceiling, only with access to the straw (BLA). Testing was conducted in a controlled environmental chamber, ambient temperature was 29.68±5.08°C, relative humidity 49.32±10.65%, and WBGT 19.32±4.43°C. Primary variables of interest included actual fluid consumed, perceived fluid consumed, actual sweat rate, and perceived sweat rate. Between group differences were analyzed using paired samples t-tests (a= p<0.05). RESULTS: There were no differences between BTL and BLA for amount of actual fluid consumed (BTL, 414.44±397.18mL; BLA, 390±288.21mL; p=0.879) actual fluid lost (BTL, 1415.56±368.62; BLA, 1344±452.14mL; p=0.712), perceived fluid consumed (BTL, 833±673mL; BLA, 565±461.64; p=0.321) or perceived fluid lost (BTL, 2444±1333; BLA, 2063±1778; p=0.607). However, when groups were combined, significant differences were found between the following variables. Perceived consumption was 692±572mL and actual consumption was 401.58±334.37mL (p=0.016). Perceived sweat losses were 2244±1552mL and actual sweat losses were 1377.89±404.90mL (p=0.015). Athletes only consumed 22.5±16.9% of actual fluid losses. Actual consumed and actual sweat losses were also significantly correlated (p<0.001). CONCLUSION: Although there were no differences between the type of vessel in which fluid was administered, NCAA Division I soccer athletes significantly overestimated both the amount of fluid they consumed and actual sweat losses during 60 minutes of exercise in the heat. These findings suggest that athletes are unaware of their individualized fluid needs, which may lead to involuntary dehydration.

Rowe Researcher: Lab-on-a-chip Device

Lab-on-a-chip Device for an Early Diagnosis of Cardiac Diseases

Spring 2016-Ongoing

Investigators: Elena Carrington, Karim Abdel Jalil, Dr. Chandra Kumar Dixit in the Chemistry as well as the Molecular and Cell Biology Department

Through various experiments, we are showing that microfluidic arrays can be used for detection of cardiovascular disease. We are examining troponin, C-Reactive Protein (CRP), and myoglobin as biomarkers for detection of cardiovascular disease. These biomarkers are used in a 3D printed microfluidic device, which is designed with an open source designing software, Autodesk 123. The fabricated chip has two distinct regions, viz fluidics and detection zone. Reagent delivery system is constituted of five micro-channels for transporting sample and reagents to the detection chamber. Monoclonal capture antibodies are spotted separately within the detection chamber. The sample and reagents follow to the waste chamber.  The detection zone is spotted with monoclonal antibodies specific to the three biomarkers. The objective of our experimental design is to develop a microfluidic-based tool for multiplexed and highly sensitive detection of cardiovascular diseases. The experiments are ongoing; therefore, we do not have conclusive results at this time.

Rowe Researcher: Self-Healing Double Network Hydrogels

Photo credit: Allison Battista
Photo credit: Allison Battista

Self-Healing Double Network Hydrogels

March 2013-2016

Investigators: Dr. Thomas Seery & Omar Allam, UConn Chemistry and Institute of Material Science (IMS), and the Jin Group, Chemistry Department at Fudan University, Shanghai, China

Hydrogels are gels in which the polymer chains that constitute them are hydrophilic and thus readily absorb water.  Theoretically, hydrogels have a wide array of applications, however, they display poor mechanical properties, which limit their use.  My research aims at i) synthesizing hydrogels with a unique double network structure in order to improve their mechanical properties (in particular, their toughness) and ii) characterizing the physical properties of these new hydrogels to determine their suitability for possible biomedical applications. If this new structure for hydrogels exhibits superior mechanical properties, it will provide an opportunity to test possible applications such as artificial cartilage, contact lenses, and scaffolds for delivering medicine.

Rowe Researcher: In Vitro Evaluation of Calcium Peroxide Release from Composite Poly(lactic-co-glycolic acid) Microsphere Scaffolds

In Vitro Evaluation of Calcium Peroxide Release from Composite Poly(lactic-co-glycolic acid) Microsphere Scaffolds

Fall 2013-Spring 2015

rowe researcherInvestigators: Ornella Tempo, Keshia Ashe, Yusuf Khan Ph.D, Cato Laurencin Ph.D/M.D UConn Health Center, Farmington CT

Bone tissue engineering looks specifically at the intersection of cells, biomaterials, and bioactive factors for the restoration of normal bone function following instances of surgical, degenerative, or traumatic bone loss. The objective of this project was to investigate the potential of a materials-only based approach for guided bone regeneration. Specifically, the capabilities of composite poly(lactic-co-glycolic acid) (PLAGA) and calcium peroxide (CaO2) sintered microsphere scaffolds were investigated as an alternative to current bone repair strategies. During this project, composite sintered microspheres were fabricated, sintered into 3-dimensional (3D) matrices, and evaluated the in vitro release of CaO2. Continue reading